J.C.S. Cuem. Comm., 1981

829

Synthesis, Electronic Structure, and Complex Formation of Simple
1,1,4,4-Tetrathiabutadienes
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Summary A new 1,1,4 4-tetrathiabutadiene donor, whose
electronic structure is described by u.v.-photoelectron
spectroscopy and molecular-orbital calculations, interacts
with tetracyanotetrafluoroquinodimethane (TCNQF,) in
CH,Cl, to give weak complexes and in MeCN by electron
transfer to provide the first example of solvent-depen-
dent electron-transfer with the strong sr-acceptor TCNQF,.

WHILE 7-donors of the tetrathiaethylene class, prototype
tetrathiafulvalene (1), have been the subject of extensive
chemical and physical study, the 1,1,4,4-tetrathiabutadienes
have received markedly less attention.! We report herein
the synthesis of the cycloalkyl-substituted 1,1,4,4-tetra-
thiabutadienes (2), the study of the electronic structure of
(2a) via u.v.-photoelectron spectroscopy (UPS) and the



830

~
ICH,)

s
n
s~

s s

-
| = ] [CH))
Es S "\s

) (2)

a; n=12

b;n=3

associated perturbation molecular orbital (PMO)2 and
CNDO/S2? calculations, the first example of #-complex
formation of a tetrathiabutadiene donor, and the first ex-
ample of solvent-dependent electron-transfer which involves
tetracyanotetrafluoroquinodimethane (TCNQF,) (3a).
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The Scheme shows the synthetic route to compounds (2).
Ethanedithiol and 1,3-propanedithiol and dimethoxydi-
hydrofuran react in CHCI, solution in the presence of BF;:
(C,H;),0 at 0 °C to give precipitates of (4a), m.p. 160 °C, and
(4b), m.p. 147 °C, respectively, both in 30—509%, yield. Com-
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ScHEME. Synthesis of 1,1,4,4-tetrathiabutadienes.

Reagents: i,
BF;+(C,H,),0; ii, p-chloranil or p-benzoquinone.
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pounds (4) were converted into (2) with p-chloranil in
refluxing benzene for 5 h or with p-benzoquinone at longer
reaction times (ca. 24 h). Elution of a silica-gel column with
hexane-benzene mixtures isolated compounds (2) in 25—
409, vyield as white, crystalline solids. Compound (2a) has
m.p. 244 °C and the following absorption spectrum; Amax
(MeCN) 350 (log e 4-51), 334 (4-56), 320 sh (4-39), 245
(3-85), and 225 nm (3-81); the data for (2b) are m.p. 118 °C;
Amax (MeCN) 355sh (4-51), 341 (4:56), and 252 nm (3-61).t

TaBLE 1. Comparison between measured vertical-ionization
potentials of (2a) and calculated =-type orbital energies (eV).

Ionization
Band potential PMO/e CNDO/S2/e

1 6-82 — 69 —-17-0

2 875 — 88 —9-0
—8-8 —90
—9-2 —9-2

3 ca. 10-60 —11-1 —11-7p

4 ca. 11-82 —12-7 —12-2

2 Since (2a) is non-planar, m—c mixing occurs. Levels listed in
Table 2 are predominantly of #-character. ? A number of o-type
levels are predicted at the following energies: —9-6, —9-8,
—10-4, —10-4, —10-5, —10-8, and —11-9 eV.

The gas-phase UPS spectrum of (2a) is shown in Figure 1
and the ionization energies are given in Table 1. Within the
PMO framework, the orbital structure of (2a) arises from
orbital interactions of sulphur lone-pairs with butadiene
7r- and sr*-orbitals; UPS spectra of butadiene* and methyl-
thioethylenes® provided input for the calculations. Given in
Figure 2 are the resultant 77-orbital correlation diagram and
the PMO energy eigenvalues (also in Table 1). Further
confirmation of the PMO results was obtained from the
CNDQ/S2 calculations, listed in Table 1; good agreement
between both calculations and experiment was obtained.
The interaction between the sulphur lone-pairs and buta-
diene orbitals is strong enough to lower the ionization energy
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FIGURE 1. Gas phase UPS (21-2 eV) of (2a).
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1 All new materials exhibited satisfactory analytical and spectral (i.r., 'H n.m.r., and mass) data.
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of (2a) to that of (1). Compared with the tetrathiaethylene
(5), ¢f. Table 2, the ionization energy of (2a) is lowered by at
least 0-25 eV.

TaBLE 2. Oxidation potentials and vertical-ionization energies
(UPS) of sulphur donors.
Compound E, E, Ig/eV

(1) +0-33 +0-70 6-81

(2a) +0-66 +0-87 6-82

(2b) +0-65

(5) +0-68 +1-12 7-05, 7-17

(6) +0-53 +0-87 6-81

In cyclic voltammetry studies in MeCN, (2a) exhibited
two reversible one electron transfers at +0-66 and +0-87 V
vs. the saturated calomel electrode (S.C.E.), while oxidation
of (2b) occurred at 4-0-65 V vs. S.C.E. Controlled potential
electrolysis of (2b) revealed that the electrochemistry
associated with the voltammogram at 4-0-65 V was not a

simple one-electron process and was mechanistically
intricate.
r————Z'Obg"r*
/
/
7
/
/ *
R
// //
6-9 b
Og 4
/ N/
/ ~
’ /
il 88 N
8:8bgau| E=== gy >—H—908bGT
DN 92 "
AN N/
(RN >/\
ARG |2 BN
\ N
\ >—-ﬂ——1z~23au7f
12T -
Sulphur Butadiene
lone-pairs T-levels
Tetrathiabutadiene
Fi1GURE 2. #-Orbital correlation diagram and calculated (PMO)

energy eigenvalues for tetrathiabutadiene (2a).

831

Table 2 summarizes vertical-ionization energies and
oxidation potentials for several organosulphur donors, which
again? reveals the absence of a quantitative correlation
between these parameters.

In both MeCN solution and by co-sublimation, (2a) inter-
acted with tetracyanoquinodimethane (TCNQ) (3b) to give
reddish black crystals{ of a weak sr-complex, m.p. 195 °C
(decomp.), vey 2215 cm™?!, with a charge-transfer maximum
at A 1035 nm in CH,Cl, solution. Since (2a) has a higher
oxidation potential in MeCN than dibenzotetrathiafulvalene
(6),% which also forms a weak complex with TCNQ,28.6 the
formation of a weak complex with TCNQ is anticipated.

=<0 <10

Since TCNQF, (3a) has a much higher reduction potential
than TCNQ (+0-53 V and +0:17 V, respectively, uvs.
S.C.E.),” electron transfer between (2a) and TCNQF, is
expected, and was observed spectroscopically in MeCN
from which a 1:1 jon-radical solid was isolated as a green
powder, m.p. 220 °C (decomp.), vgy 2180 cm—! after solvent
evaporation. Interestingly, (2a) and TCNQF, interact in
CH,Cl, solution to give, as revealed by vibrational and
electronic spectra, two weak complexes: a black solid, m.p.
135—140 °C (decomp.), vey 2200 cm™?, and a purple solid,§
m.p. 155—160 °C (decomp.), vgy 2195 cm™1, with a charge-
transfer maximum at A 1125 nm in CH,Cl,, indicating that
the donor-acceptor interaction between TCNQF, and (2a) is
stronger than that between TCNQ and (2a). The X-ray
powder patterns of the z-complexes and ion-radical solid
from TCNQF, and (2a) differ markedly. Further, (2a) is the
first donor to form both a weak complex and an ion-radical
salt with the high electron-affinity acceptor, TCNQF,. The
mr-complexes and ion-radical solid discussed above are all
insulators with resistivities of ca. 101° ohm cm.

The authors thank D. Dugger for mass spectrometry, M.
Downey and J. Mullins for X-ray powder data, C. Persiani
for C, H, and N analysis, T. Mendes and S. Meyler for
technical assistance, and Joanne McLaughlin for typing the
manuscript.
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t The unit cell data, collected using Cu-K, radiation, indicate an alternating donor-acceptor arrangement. The crystal is mono-
clinic, @ = 8:30, b = 6-85, ¢ = 8-17 A, B = 111-6°, U = 432:5 A3, Do = 1:72, Dy = 1-71 g cm—2.

§ The unit cell data, collected using Cu-Kg radiation, indicate a triclinic crystal, a = 10-159, b = 17-110, ¢ = 8-978 A, a = 97-70,
B = 9210, y = 96-17°, Do = 1:66, Dy = 1-68 gcm~2.
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